

E-beam experiments on CDX-U

Presented by Dick Majeski

R. Kaita, T. Gray, H. Kugel, J. Spaleta, J. Timberlake, L. Zakharov PPPL

> R. Doerner, R. P. Seraydarian UCSD

> > V. Soukhanovskii LLNL

Outline

- Experiments with evaporated lithium layers on CDX-U
 - Electron beam implementation
 - Effects of evaporated lithium coatings
 - Plasma discharges with solid lithium wall coatings
 - ⇒Solid lithium wall coatings are effective at gettering oxygen
 - ⇒Very low recycling conditions not obtained.
- Observations on high power density e-beam heating of thin layers of lithium
 - ⇒Demonstrated power handling of 40 MW/m² on static lithium may require a re-examination of previous assumptions for the design requirements for a lithium divertor

E-beam coating experiments

- Electron gun first installed in CDX-U in March
 - Differentially pumped Wilson seal long stroke to position over tray
 - » Interferes with plasma; must be removed
 - TF + VF used to guide beam (~70G ea, typ.)
 - Lithium tray fill used as target.

Radial e-beam

♦ Converted Thermionics e-gun

CDX-U

- Very simple beam "optics"
- 4 kV, 300 350 mA typ.
- 5 min. operating cycle, run at up to 50% duty factor
- Uncooled (Tantalum, Macor, SS)

Electron beam evaporation run from 4/07/05 Third 240 sec. cycle at 1.2 kW 40 MW/m²

Produced 1000Å coating on deposition monitor at 0.9m distance

Viewing windows acquired opaque, metallic coating

Plasma operations with evaporated coatings

Procedure:

- E-beam evaporation to produce a 1000 Å coating of lithium
 - » Measured at 0.9m with a quartz crystal deposition monitor
- Retract e-beam, switch magnet power supplies
- Setup for tokamak discharges
- ◆ Total elapsed time ~15 min. until first discharge
 - Time for many monolayers of surface coating on the fresh lithium
- Strong effect on vacuum conditions
 - Water disappears from the RGA
 - Base pressure drops by $2 \times (\text{to } 6-7 \times 10^{-8} \text{ Torr})$
- Good impurity reduction, no significant particle pumpout
 - Not a low recycling surface

Fueling comparison: bare tray, hot lithium, solid coatings

Beam source design modified to permit plasma operations with beam installed

- Axial beam orientation to allow mounting in upper port
- Beam inserted ~ 5cm past upper vessel wall
 - 5 cm behind upper rail limiter
- Guide beam to lithium with vertical field only
 - 4 kV, 300 mA

CDX-U

THERMOCOUPLE PLACEMENT ON

PPPL

Electron beam evaporation run from 5/04 Third 240 sec. cycle at 1.3 kW 40 MW/m²

~10Å coating on deposition monitor at 1.0m distance No visible coatings on any windows

Marangoni flow, (not thermo-conduction !!!), controls heat transport

Surface tension gradient generates a viscous flow inside liquid lithium

Fluid Dynamics:
$$\rho \frac{D\vec{V}}{Dt} = -\nabla P + \underbrace{\nu \Delta \vec{V}}_{viscosity}, \quad P = \underbrace{p}_{pressure} + \underbrace{\rho gz}_{gravity} \tag{0.1}$$

with a boundary condition (T is the surface temperature, \vec{n} is a normal to the pool)

$$\nu(\vec{n} \times \vec{V})_{surface} = -\vec{n} \times \nabla \underbrace{\sigma(T)}_{\substack{surface \\ tension}} = \underbrace{-\frac{d\sigma(T)}{dT}(\vec{n} \times \nabla T)}_{Marangoni\ flow\ drive}. \tag{0.2}$$

Negative $\sigma'(T) < 0$ drives the fluid away from the hot spot

Marangoni flow effects is dominant in physics of the e-beam spot heating.

The flow establishment across the pool (several secs) is determined by

$$d_{\nu-skin} = 1.8\sqrt{t} \cdot 10^{-3} < \frac{1}{2}d_{pool\ depth}, \quad \vec{V} = 4 \cdot 10^{-4}\nabla T\sqrt{t}$$
 (0.3)

Thermal conductivity based $abla T \simeq 10^5$ K°/m would give $ec{V} > 10$ m/sec in a fraction of sec.

Marangoni flow generates heat front propagation and surface waves

- Surface tension elevates the fluid surface and, thus, establishes the pressure gradient along the pool: p = p(x, y).
- Slowly evolving convective cells are established with dominant component

$$\vec{V} \simeq V_x \vec{e}_x + V_y \vec{e}_y = \frac{\sigma'(T)}{\nu} \frac{3z^2 - 2z d_{pool\ depth}}{4d_{pool\ depth}} \nabla T|_{surface}.$$
 (0.4)

mixing the heat inside the fluid and, thus, limiting ∇T .

abla T is self-consistently determined by balancing heating and convective transport

- Convective cell region expands toward the cold fluid (or yet unmelted Li) in a form of a heat wave, melting new area and heating the fluid.
- At the same time, elevated surface of the fluid generates surface waves in the cold fluid.

Summary

- Electron beam evaporation of lithium to produce wall coatings was far more difficult than expected
 - Entire lithium inventory is heated
 - Suggests that convective heat flow completely dominates
- Wall coatings were obtained with successive heating cycles
 - 1000Å at ~85 cm was selected as a "standard coating"
- Lithium "gettering" produced robust, high current discharges
 - Not low recycling
 - Time delay may play a role
- Evaporation experiments have demonstrated 40 MW/m² power handling capability of thin (3-4 mm) static (i.e. no forced flow) lithium films
 - Tests limited only by available power density

Issues for static liquid metal divertors

- What is the effect of a high magnetic field?
 - CDX-U coils can only operate up to 200 300 Gauss for long pulse
 - Testing at 5T is desirable, with divertor-like field geometry
- Is this power handling capability limited to lithium?
 - What about tin, gallium?
- What is the peak surface temperature?
 - Surface temperature distribution?
 - IR camera highly desirable (slow is ok)
- How thin/thick can the layer be?
- ◆ What is the power handling limit for ~100 sec pulses?
- Would a thermally controlled substrate allow for steady state operation?

